Wikipedia

Cape Creek Bridge

Cape Creek Bridge No. 01113
CapeCreekBridge.jpg
Location US 101
Built1932
ArchitectConde B. McCullough
MPSC. B. McCullough Major Oregon Coast Highway Bridges, 1927-1936 MPS
NRHP reference No.05000820
Added to NRHP2005
Cape Creek Bridge, Oregon

Cape Creek Bridge is an arch bridge that spans Cape Creek in Lane County, Oregon, United States. The bridge carries U.S. Route 101. Opened in 1932, it was designed by noted bridge engineer Conde McCullough and built of reinforced concrete by John K. Holt.[1][2] The total length of the bridge is 619 feet (188.6 m), with a main span of 220 feet (67 m).[1] The bridge resembles a Roman aqueduct, with a single parabolic arch that spans half its length.[2] It was listed as Cape Creek Bridge No. 01113 on the National Register of Historic Places in 2005, as part of the McCullough, C.B., Major Oregon Coast Highway Bridges MPS (Multiple Property Submission).

Corrosion protection

The Cape Creek Bridge has been impressed-current cathodically protected (ICCP) from corrosion since 1991. Rebar in concrete is highly susceptible to corrosion by chloride ions from seawater and de-icing salts. Contractors to the Oregon Department of Transportation have plasma-sprayed 102,000 square feet (9,500 m2) of 0.020-inch (0.5 mm) thick zinc onto the exposed concrete to provide a sacrificial anode that corrodes in lieu of the steel rebar.[3][4][5][6]

See also

  • Heceta Head
  • List of bridges on the National Register of Historic Places in Oregon
  • List of bridges on U.S. Route 101 in Oregon

References

  1. ^ a b Hadlow, Robert W. (2001). Elegant Arches, Soaring Spans: C. B. McCullough, Oregon's Master Bridge Builder. Corvallis, Oregon: Oregon State University Press. ISBN 0-87071-534-8.
  2. ^ a b Style & Vernacular: A Guide to the Architecture of Lane County, Oregon. Western Imprints, The Press of the Oregon Historical Society. 1983. p. 151. ISBN 0-87595-085-X.
  3. ^ "Cape Creek Bridge Cathodic Protection Operating Data: 1992-94," Oregon Dept. of Transportation Report, 1995.
  4. ^ R. Brousseau, M. Arnott & B. Baldock, "Laboratory Performance of Zinc Anodes for Impressed Current Cathodic Protection of Reinforced Concrete'" Corrosion 51, 8 (Aug 1995): p 639-644.
  5. ^ B.S. Covino, Jr., S.J. Bullard, G.R. Holcomb, S.D. Cramer, G.E. McGill, and C.B. Cryer, "Bond Strength of Electrochemically Aged Arc-Sprayed Zinc Coatings on Concrete," Corrosion 53, 5 (May 1997): p 399-411.
  6. ^ G.R. Holcomb, B.S. Covino, Jr., J.H. Russell, S.J. Bullard, S.D. Cramer, W.K. Collins, J.E. Bennett and H.M. Laylor, "Humectant Use in the Cathodic Protection of Reinforced Concrete," Corrosion 56, 11 (Nov 2000): p 1140-1157.

External links


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.