Wikipedia

Borel fixed-point theorem

In mathematics, the Borel fixed-point theorem is a fixed-point theorem in algebraic geometry generalizing the Lie–Kolchin theorem. The result was proved by Armand Borel (1956).

Statement

If G is a connected, solvable, linear algebraic group acting regularly on a non-empty, complete algebraic variety V over an algebraically closed field k, then there is a G fixed-point of V.

A more general version of the theorem holds over a field k that is not necessarily algebraically closed. A solvable algebraic group G is split over k or k-split if G admits a composition series whose composition factors are isomorphic (over k) to the additive group or the multiplicative group . If G is a connected, k-split solvable algebraic group acting regularly on a complete variety V having a k-rational point, then there is a G fixed-point of V.[1]

References

  1. ^ Borel (1991), Proposition 15.2
  • Borel, Armand (1956). "Groupes linéaires algébriques". Ann. Math. 2. Annals of Mathematics. 64 (1): 20–82. doi:10.2307/1969949. JSTOR 1969949. MR 0093006.
  • Borel, Armand (1991) [1969], Linear Algebraic Groups (2nd ed.), New York: Springer-Verlag, ISBN 0-387-97370-2, MR 1102012

External links


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.