G. H. Hardy shows there are infinitely many zeros on the critical line.[6]Harald Bohr and Edmund Landau show that for any positive ε, all but an infinitely small proportion of zeros lie within a distance ε of the critical line;[7] and R. J. Backlund introduces a better method of checking the zeros.
October 1 – Edgar Buckingham introduces use of the symbol "πi" for the dimensionless variables (or parameters) in what becomes known as the Buckingham π theorem, significant to dimensional analysis.[10]
^Hardy, G. H. (1914). "Sur les zéros de la fonction ζ(s) de Riemann". Comptes rendus de l'Académie des sciences. Paris. 158: 1012–1014. JFM 45.0716.04. Reprinted in Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea, eds. (2008). The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike. CMS Books in Mathematics. New York: Springer. ISBN 978-0-387-72125-5.
^Bohr, H.; Landau, E. (1914). "Ein Satz über Dirichletsche Reihen mit Anwendung auf die ζ-Funktion und die L-Funktionen". Rendiconti del Circolo Matematico di Palermo. 37 (1): 269–272. doi:10.1007/BF03014823. S2CID 121145912.
^Hillebrand, W. F.; Merwin, H. E.; Wright, Fred E. (January–May 1914). "Hewettite, Metahewettite and Pascoite, Hydrous Calcium Vanadates". Proc. Am. Philos. Soc.53 (213): 31–54. JSTOR 984129.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.