Wikipedia

Variational methods in general relativity

Variational methods in general relativity refers to various mathematical techniques that employ the use of variational calculus in Einstein's theory of general relativity. The most commonly used tools are Lagrangians and Hamiltonians and are used to derive the Einstein field equations.

Lagrangian methods

The equations of motion in physical theories can often be derived from an object called the Lagrangian. In classical mechanics, this object is usually of the form, 'kinetic energypotential energy'. In general, the Lagrangian is that function which when integrated over produces the Action functional.

David Hilbert gave an early and classic formulation of the equations in Einstein's general relativity. This used the functional now called the Einstein-Hilbert action.

See also

References


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.