Wikipedia

Laplacian vector field

In vector calculus, a Laplacian vector field is a vector field which is both irrotational and incompressible. If the field is denoted as v, then it is described by the following differential equations:

From the vector calculus identity it follows that

that is, that the field v satisfies Laplace's equation.

However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a Laplacian vector field.

A Laplacian vector field in the plane satisfies the Cauchy–Riemann equations: it is holomorphic.

Since the curl of v is zero, it follows that (when the domain of definition is simply connected) v can be expressed as the gradient of a scalar potential (see irrotational field) φ :

Then, since the divergence of v is also zero, it follows from equation (1) that

which is equivalent to

Therefore, the potential of a Laplacian field satisfies Laplace's equation.

See also


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.