Wikipedia

Formal moduli

In mathematics, formal moduli are an aspect of the theory of moduli spaces (of algebraic varieties or vector bundles, for example), closely linked to deformation theory and formal geometry. Roughly speaking, deformation theory can provide the Taylor polynomial level of information about deformations, while formal moduli theory can assemble consistent Taylor polynomials to make a formal power series theory. The step to moduli spaces, properly speaking, is an algebraization question, and has been largely put on a firm basis by Artin's approximation theorem.

A formal universal deformation is by definition a formal scheme over a complete local ring, with special fiber the scheme over a field being studied, and with a universal property amongst such set-ups. The local ring in question is then the carrier of the formal moduli.

References

  • "Deformation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.