Wikipedia

Clarkson's inequalities

In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of Lp spaces. They give bounds for the Lp-norms of the sum and difference of two measurable functions in Lp in terms of the Lp-norms of those functions individually.

Statement of the inequalities

Let (X, Σ, μ) be a measure space; let fg : X → R be measurable functions in Lp. Then, for 2 ≤ p < +∞,

For 1 < p < 2,

where

i.e., q = p &fras1; (p − 1).

The case p ≥ 2 is somewhat easier to prove, being a simple application of the triangle inequality and the convexity of

References

  • Clarkson, James A. (1936), "Uniformly convex spaces", Transactions of the American Mathematical Society, 40 (3): 396–414, doi:10.2307/1989630, MR 1501880.
  • Hanner, Olof (1956), "On the uniform convexity of Lp and p", Arkiv för Matematik, 3 (3): 239–244, doi:10.1007/BF02589410, MR 0077087.
  • Friedrichs, K. O. (1970), "On Clarkson's inequalities", Communications on Pure and Applied Mathematics, 23: 603–607, doi:10.1002/cpa.3160230405, MR 0264372.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.