Wikipedia

Virtually

Also found in: Dictionary, Encyclopedia.
For the definitions of this word, see the Wiktionary definition of virtually.

In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P.

Common uses for this would be when P is abelian, nilpotent, solvable or free. For example, virtually solvable groups are one of the two alternatives in the Tits alternative, while Gromov's theorem states that the finitely generated groups with polynomial growth are precisely the finitely generated virtually nilpotent groups.

This terminology is also used when P is just another group. That is, if G and H are groups then G is virtually H if G has a subgroup K of finite index in G such that K is isomorphic to H.

In particular, a group is virtually trivial if and only if it is finite. Two groups are virtually equal if and only if they are commensurable.

Examples

Virtually abelian

The following groups are virtually abelian.

  • Any abelian group.
  • Any semidirect product where N is abelian and H is finite. (For example, any generalized dihedral group.)
  • Any semidirect product where N is finite and H is abelian.
  • Any finite group (since the trivial subgroup is abelian).

Virtually nilpotent

  • Any group that is virtually abelian.
  • Any nilpotent group.
  • Any semidirect product where N is nilpotent and H is finite.
  • Any semidirect product where N is finite and H is nilpotent.

Gromov's theorem says that a finitely generated group is virtually nilpotent if and only if it has polynomial growth.

Virtually polycyclic

Virtually free

  • Any free group.
  • Any virtually cyclic group.
  • Any semidirect product where N is free and H is finite.
  • Any semidirect product where N is finite and H is free.
  • Any free product , where H and K are both finite. (For example, the modular group .)

It follows from Stalling's theorem that any torsion-free virtually free group is free.

Others

The free group on 2 generators is virtually for any as a consequence of the Nielsen–Schreier theorem and the Schreier index formula.

The group is virtually connected as has index 2 in it.

References

  • Schneebeli, Hans Rudolf (1978). "On virtual properties and group extensions". Mathematische Zeitschrift. 159: 159–167. doi:10.1007/bf01214488. Zbl 0358.20048.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.