Wikipedia

Reduct

Also found in: Dictionary, Encyclopedia.

In universal algebra and in model theory, a reduct of an algebraic structure is obtained by omitting some of the operations and relations of that structure. The converse of "reduct" is "expansion."

Definition

Let A be an algebraic structure (in the sense of universal algebra) or a structure in the sense of model theory, organized as a set X together with an indexed family of operations and relations φi on that set, with index set I. Then the reduct of A defined by a subset J of I is the structure consisting of the set X and J-indexed family of operations and relations whose j-th operation or relation for jJ is the j-th operation or relation of A. That is, this reduct is the structure A with the omission of those operations and relations φi for which i is not in J.

A structure A is an expansion of B just when B is a reduct of A. That is, reduct and expansion are mutual converses.

Examples

The monoid (Z, +, 0) of integers under addition is a reduct of the group (Z, +, −, 0) of integers under addition and negation, obtained by omitting negation. By contrast, the monoid (N,+,0) of natural numbers under addition is not the reduct of any group.

Conversely the group (Z, +, −, 0) is the expansion of the monoid (Z, +, 0), expanding it with the operation of negation.

References

  • Burris, Stanley N.; H. P. Sankappanavar (1981). A Course in Universal Algebra. Springer. ISBN 3-540-90578-2.
  • Hodges, Wilfrid (1993). Model theory. Cambridge University Press. ISBN 0-521-30442-3.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.