Wikipedia

Many-body problem

Also found in: Encyclopedia.

The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus sometimes separately classified as few-body systems. In such a quantum system, the repeated interactions between particles create quantum correlations, or entanglement. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes exact or analytical calculations impractical or even impossible. Thus, many-body theoretical physics most often relies on a set of approximations specific to the problem at hand, and ranks among the most computationally intensive fields of science.

Examples

Approaches

Further reading

  • Jenkins, Stephen. "The Many Body Problem and Density Functional Theory".
  • Thouless, D. J. (1972). The quantum mechanics of many-body systems. New York: Academic Press. ISBN 0-12-691560-1.
  • Fetter, A. L.; Walecka, J. D. (2003). Quantum Theory of Many-Particle Systems. New York: Dover. ISBN 0-486-42827-3.
  • Nozières, P. (1997). Theory of Interacting Fermi Systems. Addison-Wesley. ISBN 0-201-32824-0.
  • Mattuck, R. D. (1976). A guide to Feynman diagrams in the many-body problem. New York: McGraw-Hill. ISBN 0-07-040954-4.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.