Wikipedia

Unconditional convergence

Also found in: Encyclopedia.

In mathematics, specifically functional analysis, a series is unconditionally convergent if all reorderings of the series converge to the same value. In contrast, a series is conditionally convergent if it converges but different orderings do not all converge to that same value. Unconditional convergence is equivalent to absolute convergence in finite-dimensional vector spaces, but is a weaker property in infinite dimensions.

Definition

Let be a topological vector space. Let be an index set and for all .

The series is called unconditionally convergent to , if

Alternative definition

Unconditional convergence is often defined in an equivalent way: A series is unconditionally convergent if for every sequence , with , the series

converges.

If X is a Banach space, every absolutely convergent series is unconditionally convergent, but the converse implication does not hold in general. Indeed, if X is an infinite-dimensional Banach space, then by Dvoretzky–Rogers theorem there always exists an unconditionally convergent series in this space that is not absolutely convergent. However when X = Rn, by the Riemann series theorem, the series is unconditionally convergent if and only if it is absolutely convergent.

See also

References

  • Ch. Heil: A Basis Theory Primer
  • Knopp, Konrad (1956). Infinite Sequences and Series. Dover Publications. ISBN 9780486601533.
  • Knopp, Konrad (1990). Theory and Application of Infinite Series. Dover Publications. ISBN 9780486661650.
  • Wojtaszczyk, P. (1996). Banach spaces for analysts. Cambridge University Press. ISBN 9780521566759.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.