Wikipedia

Tris(dibenzylideneacetone)dipalladium(0)

Tris(dibenzylideneacetone)dipalladium(0)
Pd2(dba)3.png
Tris(dibenzylideneacetone)dipalladium(0)-3D-balls.png
Names
IUPAC name
Tris(dibenzylideneacetone)dipalladium
Other names
Pd2(dba)3
Identifiers
ECHA InfoCard 100.122.794 Edit this at Wikidata
Properties
Chemical formula
C51H42O3Pd2
Molar mass 915.73 g·mol−1
Melting point 152 to 155 °C (306 to 311 °F; 425 to 428 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tris(dibenzylideneacetone)dipalladium(0) or [Pd2(dba)3] is an organopalladium compound. The compound is a complex of palladium(0) with dibenzylideneacetone (dba). It is a dark-purple/brown solid, which is modestly soluble in organic solvents. Because the dba ligands are easily displaced, the complex is used as a homogeneous catalyst in organic synthesis.[1]

Preparation and structure

Pd2(dba)3

First reported in 1970,[2] it is prepared from dibenzylideneacetone and sodium tetrachloropalladate. Because it is commonly recrystallized from chloroform, the complex is often supplied as the adduct [Pd2(dba)3·CHCl3].[1] The purity of samples can be variable.[3]

In [Pd2(dba)3], the pair of Pd atoms are separated by 320 pm but are tied together by dba units.[4] The Pd(0) centres are bound to the alkene parts of the dba ligands.

Applications

[Pd2(dba)3] is used as a source of soluble Pd(0), in particular as a catalyst for various coupling reactions. Examples of reactions using this reagent are the Negishi coupling, Suzuki coupling, Carroll rearrangement, and Trost asymmetric allylic alkylation, as well as Buchwald–Hartwig amination.[5]

Related Pd(0) complexes are [Pd(dba)2][6] and tetrakis(triphenylphosphine)palladium(0).

References

  1. ^ a b Jiro Tsuji and Ian J. S. Fairlamb "Tris(dibenzylideneacetone)dipalladium–Chloroform" E-EROS, 2008. doi:10.1002/047084289X.rt400.pub2
  2. ^ Takahashi, Y.; Ito, Ts.; Sakai, S.; Ishii, Y. (1970). "A novel palladium(0) complex; bis(dibenzylideneacetone)palladium(0)". Journal of the Chemical Society D: Chemical Communications (17): 1065. doi:10.1039/C29700001065.
  3. ^ Zalesskiy, S. S., Ananikov, V. P., "Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis", Organometallics 2012, 31, 2302. doi:10.1021/om201217r
  4. ^ Pierpont, Cortlandt G.; Mazza, Margaret C. (1974). "Crystal and molecular structure of tris(dibenzylideneacetone)dipalladium(0)". Inorg. Chem. 13 (8): 1891. doi:10.1021/ic50138a020.
  5. ^ Hartwig, J. F. (2010). Organotransition Metal Chemistry, from Bonding to Catalysis. New York: University Science Books. ISBN 1-891389-53-X.
  6. ^ John R. Stille, F. Christopher Pigge, Christopher S. Regens, Ke Chen, Adrian Ortiz and Martin D. Eastgate "Bis(dibenzylideneacetone)palladium(0)" E-eros. 2013. doi:10.1002/047084289X.rb138.pub3
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.