Wikipedia

Trapezohedron

Also found in: Dictionary, Encyclopedia.
Dual-uniform n-gonal trapezohedra
Example dual-uniform decagonal trapezohedron
Type dual-uniform in the sense of dual-semiregular polyhedron
Conway notation dAn
Schläfli symbol { } ⨁ {n}[1]
Coxeter diagrams CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 2x.pngCDel n.pngCDel node.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel n.pngCDel node fh.png
Faces 2n congruent kites
Edges 4n
Vertices 2n + 2
Face configuration V3.3.3.n
Symmetry group Dnd, [2+,2n], (2*n), order 4n
Rotation group Dn, [2,n]+, (22n), order 2n
Dual polyhedron (convex) uniform n-gonal antiprism
Properties convex, face-transitive, regular vertices[2]

The n-gonal trapezohedron, antidipyramid, antibipyramid, or deltohedron is the dual polyhedron of an n-gonal antiprism. The 2n faces of the n-trapezohedron are symmetrically staggered. With a higher symmetry, its 2n faces are congruent kites (also called deltoids).

The n-gon part of the name does not refer to faces here but to two arrangements of vertices around an axis of symmetry. The dual n-gonal antiprism has two actual n-gon faces.

An n-gonal trapezohedron can be dissected into two equal n-gonal pyramids and an n-gonal antiprism.

Name

These figures, sometimes called deltohedra, must not be confused with deltahedra, whose faces are equilateral triangles.

In crystallography, describing the crystal habits of minerals, the word trapezohedron is often used for the polyhedron properly known as a deltoidal icositetrahedron; another polyhedron is known as a deltoid dodecahedron.[3]

Symmetry

The symmetry group of an n-gonal trapezohedron is Dnd of order 4n, except in the case of a cube, which has the larger symmetry group Od of order 48, which has four versions of D3d as subgroups.

The rotation group is Dn of order 2n, except in the case of a cube, which has the larger rotation group O of order 24, which has four versions of D3 as subgroups.

One degree of freedom within symmetry from Dnd (order 4n) to Dn (order 2n) changes the congruent kites into congruent quadrilaterals with three edge lengths, called twisted kites, and the trapezohedron is called a twisted trapezohedron. (In the limit, one edge of each quadrilateral goes to zero length, and the trapezohedron becomes a bipyramid.)

If the kites surrounding the two peaks are not twisted but are of two different shapes, the trapezohedron can only have Cnv (cyclic) symmetry, order 2n, and is called an unequal or asymmetric trapezohedron. Its dual is an unequal antiprism, with the top and bottom polygons of different radii.

If the kites are twisted and are of two different shapes, the trapezohedron can only have Cn (cyclic) symmetry, order n, and is called an unequal twisted trapezohedron.

Example variations
Type Twisted trapezohedron Unequal trapezohedron Unequal twisted trapezohedron
Symmetry Dn, (nn2), [n,2]+ Cnv, (*nn), [n] Cn, (nn), [n]+
Image
(n=6)
Twisted hexagonal trapezohedron.png Twisted hexagonal trapezohedron2.png Unequal hexagonal trapezohedron.png Unequal twisted hexagonal trapezohedron.png
Net Twisted hexagonal trapezohedron net.png Twisted hexagonal trapezohedron2 net.png Unequal hexagonal trapezohedron net.png Unequal twisted hexagonal trapezohedron net.png

Forms

A n-trapezohedron has 2n quadrilateral faces, with 2n+2 vertices. Two vertices are on the polar axis, and the others are in two regular n-gonal rings of vertices.

Family of n-gonal trapezohedra
Polyhedron image Digonal trapezohedron.png TrigonalTrapezohedron.svg Tetragonal trapezohedron.png Pentagonal trapezohedron.svg Hexagonal trapezohedron.png Heptagonal trapezohedron.png Octagonal trapezohedron.png Decagonal trapezohedron.png Dodecagonal trapezohedron.png ... Apeirogonal trapezohedron
Spherical tiling image Spherical digonal antiprism.png Spherical trigonal trapezohedron.png Spherical tetragonal trapezohedron.png Spherical pentagonal trapezohedron.png Spherical hexagonal trapezohedron.png Spherical heptagonal trapezohedron.png Spherical octagonal trapezohedron.png Spherical decagonal trapezohedron.png Spherical dodecagonal trapezohedron.png Plane tiling image Apeirogonal trapezohedron.svg
Face configuration Vn.3.3.3 V2.3.3.3 V3.3.3.3 V4.3.3.3 V5.3.3.3 V6.3.3.3 V7.3.3.3 V8.3.3.3 V10.3.3.3 V12.3.3.3 ... V∞.3.3.3

Special cases:

  • n=2: A degenerate form of trapezohedron: a geometric tetrahedron with 6 vertices, 8 edges, and 4 degenerate kite faces that are degenerated into triangles. Its dual is a degenerate form of antiprism: also a tetrahedron.
  • n=3: In the case of the dual of a triangular antiprism, the kites are rhombi (or squares); hence these trapezohedra are also zonohedra. They are called rhombohedra. They are cubes scaled in the direction of a body diagonal. Also they are the parallelepipeds with congruent rhombic faces.
    A 60° rhombohedron, dissected into a central regular octahedron and two regular tetrahedra

Examples

  • Crystal arrangements of atoms can repeat in space with trigonal and hexagonal trapezohedral cells.[4]
  • The pentagonal trapezohedron is the only polyhedron other than the Platonic solids commonly used as a die in roleplaying games such as Dungeons & Dragons. Having 10 sides, it can be used in repetition to generate any decimal-based uniform probability desired. Two dice of different colors are typically used for the two digits to represent numbers from 00 to 99.

Star trapezohedra

Self-intersecting trapezohedron exist with a star polygon central figure, defined by kite faces connecting each polygon edge to these two points. A p/q-trapezohedron has Coxeter-Dynkin diagram CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel p.pngCDel rat.pngCDel q.pngCDel node fh.png.

Uniform dual p/q star trapezohedra up to p = 12
5/2 5/3 7/2 7/3 7/4 8/3 8/5 9/2 9/4 9/5
5-2 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 5.pngCDel rat.pngCDel 2x.pngCDel node fh.png
5-3 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node fh.png
7-2 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 7.pngCDel rat.pngCDel 2x.pngCDel node fh.png
7-3 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 7.pngCDel rat.pngCDel 3x.pngCDel node fh.png
7-4 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 7.pngCDel rat.pngCDel 4.pngCDel node fh.png
8-3 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel node fh.png
8-5 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 8.pngCDel rat.pngCDel 5.pngCDel node fh.png
9-2 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 9.pngCDel rat.pngCDel 2x.pngCDel node fh.png
9-4 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 9.pngCDel rat.pngCDel 4.pngCDel node fh.png
9-5 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 9.pngCDel rat.pngCDel 5.pngCDel node fh.png
10/3 11/2 11/3 11/4 11/5 11/6 11/7 12/5 12/7
10-3 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node fh.png
11-2 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 2x.pngCDel node fh.png
11-3 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 3x.pngCDel node fh.png
11-4 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 4.pngCDel node fh.png
11-5 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 5.pngCDel node fh.png
11-6 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 6.pngCDel node fh.png
11-7 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 7.pngCDel node fh.png
12-5 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 12.pngCDel rat.pngCDel 5.pngCDel node fh.png
12-7 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 12.pngCDel rat.pngCDel 7.pngCDel node fh.png

See also

References

  1. ^ N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite symmetry groups, 11.3 Pyramids, Prisms, and Antiprisms, Figure 11.3c
  2. ^ "duality". maths.ac-noumea.nc. Retrieved 2020-10-19.
  3. ^ "1911 Encyclopædia Britannica/Crystallography - Wikisource, the free online library". en.m.wikisource.org. Retrieved 2020-11-16.
  4. ^ Trigonal-trapezohedric Class, 3 2 and Hexagonal-trapezohedric Class, 6 2 2
  • Anthony Pugh (1976). Polyhedra: A visual approach. California: University of California Press Berkeley. ISBN 0-520-03056-7. Chapter 4: Duals of the Archimedean polyhedra, prisma and antiprisms

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.