Wikipedia

Toda field theory

In the study of field theory and partial differential equations, a Toda field theory (named after Morikazu Toda) is derived from the following Lagrangian:

Here x and t are spacetime coordinates, (,) is the Killing form of a real r-dimensional Cartan algebra of a Kac–Moody algebra over , αi is the ith simple root in some root basis, ni is the Coxeter number, m is the mass (or bare mass in the quantum field theory version) and β is the coupling constant.

Then a Toda field theory is the study of a function φ mapping 2-dimensional Minkowski space satisfying the corresponding Euler–Lagrange equations.

If the Kac–Moody algebra is finite, it's called a Toda field theory. If it is affine, it is called an affine Toda field theory (after the component of φ which decouples is removed) and if it is hyperbolic, it is called a hyperbolic Toda field theory.

Toda field theories are integrable models and their solutions describe solitons.

Examples

Liouville field theory is associated to the A1 Cartan matrix.

The sinh-Gordon model is the affine Toda field theory with the generalized Cartan matrix

and a positive value for β after we project out a component of φ which decouples.

The sine-Gordon model is the model with the same Cartan matrix but an imaginary β.

References

  • Mussardo, Giuseppe (2009), Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics, Oxford University Press, ISBN 0-199-54758-0
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.