Wikipedia

Takeuti's conjecture

(redirected from Takeuti conjecture)

In mathematics, Takeuti's conjecture is the conjecture of Gaisi Takeuti that a sequent formalisation of second-order logic has cut-elimination (Takeuti 1953). It was settled positively:

  • By Tait, using a semantic technique for proving cut-elimination, based on work by Schütte (Tait 1966);
  • Independently by Prawitz (Prawitz 1968) and Takahashi (Takahashi 1967) by a similar technique (Takahashi 1967) - although Prawitz's and Takahashi's proofs are not limited to second-order logic, but concern higher-order logics in general;
  • It is a corollary of Jean-Yves Girard's syntactic proof of strong normalization for System F.

Takeuti's conjecture is equivalent to the consistency of second-order arithmetic in the sense that each of the statements can be derived from each other in the weak system PRA; consistency refers here to the truth of the Gödel sentence for second-order arithmetic. It is also equivalent to the strong normalization of the Girard/Reynold's System F.

See also

References

  • Dag Prawitz, 1968. Hauptsatz for higher order logic. J. Symb. Log., 33:452–457, 1968.
  • William W. Tait, 1966. A nonconstructive proof of Gentzen's Hauptsatz for second order predicate logic. In Bulletin of the American Mathematical Society, 72:980–983.
  • Gaisi Takeuti, 1953. On a generalized logic calculus. In Japanese Journal of Mathematics, 23:39–96. An errata to this article was published in the same journal, 24:149–156, 1954.
  • Moto-o Takahashi, 1967. A proof of cut-elimination in simple type theory. In Japanese Mathematical Society, 10:44–45.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.