Wikipedia

Symmetrically continuous function

In mathematics, a function is symmetrically continuous at a point x

The usual definition of continuity implies symmetric continuity, but the converse is not true. For example, the function is symmetrically continuous at , but not continuous.

Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability.

References

  • Thomson, Brian S. (1994). Symmetric Properties of Real Functions. Marcel Dekker. ISBN 0-8247-9230-0.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.