Wikipedia

Stochastic neural network

Stochastic neural networks are a type of artificial neural networks built by introducing random variations into the network, either by giving the network's neurons stochastic transfer functions, or by giving them stochastic weights. This makes them useful tools for optimization problems, since the random fluctuations help it escape from local minima.

An example of a neural network using stochastic transfer functions is a Boltzmann machine. Each neuron is binary valued, and the chance of it firing depends on the other neurons in the network.

Stochastic neural networks have found applications in risk management, oncology, bioinformatics, and other similar fields.

References

  • Turchetti, Claudio (2004), Stochastic Models of Neural Networks, Frontiers in artificial intelligence and applications: Knowledge-based intelligent engineering systems, 102, IOS Press, ISBN 9781586033880.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.