Wikipedia

Stationary distribution

Also found in: Encyclopedia.

Stationary distribution may refer to:

  • A special distribution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of all states at any time will always be the stationary distribution. Assuming irreducibility, the stationary distribution is always unique if it exists, and its existence can be implied by positive recurrence of all states. The stationary distribution has the interpretation of the limiting distribution when the chain is ergodic.
  • The marginal distribution of a stationary process or stationary time series
  • The set of joint probability distributions of a stationary process or stationary time series

In some fields of application, the term stable distribution is used for the equivalent of a stationary (marginal) distribution, although in probability and statistics the term has a rather different meaning: see stable distribution.

Crudely stated, all of the above are specific cases of a common general concept. A stationary distribution is a specific entity which is unchanged by the effect of some matrix or operator: it need not be unique. Thus stationary distributions are related to eigenvectors for which the eigenvalue is unity.

See also

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.