Wikipedia

Static spacetime

In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static.

Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.e., whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds.

Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form

,

where R is the real line, is a (positive definite) metric and is a positive function on the Riemannian manifold S.

In such a local coordinate representation the Killing field may be identified with and S, the manifold of -trajectories, may be regarded as the instantaneous 3-space of stationary observers. If is the square of the norm of the Killing vector field, , both and are independent of time (in fact ). It is from the latter fact that a static spacetime obtains its name, as the geometry of the space-like slice S does not change over time.

Examples of static spacetimes

  • The (exterior) Schwarzschild solution.
  • de Sitter space (the portion of it covered by the static patch).
  • Reissner–Nordström space.
  • The Weyl solution, a static axisymmetric solution of the Einstein vacuum field equations discovered by Hermann Weyl.

Examples of non-static spacetimes

In general, "almost all" spacetimes will not be static. Some explicit examples include:

References

  • Hawking, S. W.; Ellis, G. F. R. (1973), The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, 1, London-New York: Cambridge University Press, MR 0424186
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.