Wikipedia

Simplicial approximation theorem

In mathematics, the simplicial approximation theorem is a foundational result for algebraic topology, guaranteeing that continuous mappings can be (by a slight deformation) approximated by ones that are piecewise of the simplest kind. It applies to mappings between spaces that are built up from simplices—that is, finite simplicial complexes. The general continuous mapping between such spaces can be represented approximately by the type of mapping that is (affine-) linear on each simplex into another simplex, at the cost (i) of sufficient barycentric subdivision of the simplices of the domain, and (ii) replacement of the actual mapping by a homotopic one.

This theorem was first proved by L.E.J. Brouwer, by use of the Lebesgue covering theorem (a result based on compactness). It served to put the homology theory of the time—the first decade of the twentieth century—on a rigorous basis, since it showed that the topological effect (on homology groups) of continuous mappings could in a given case be expressed in a finitary way. This must be seen against the background of a realisation at the time that continuity was in general compatible with the pathological, in some other areas. This initiated, one could say, the era of combinatorial topology.

There is a further simplicial approximation theorem for homotopies, stating that a homotopy between continuous mappings can likewise be approximated by a combinatorial version.

Formal statement of the theorem

Let and be two simplicial complexes. A simplicial mapping is called a simplicial approximation of a continuous function if for every point , belongs to the minimal closed simplex of containing the point . If is a simplicial approximation to a continuous map , then the geometric realization of , is necessarily homotopic to .

The simplicial approximation theorem states that given any continuous map there exists a natural number such that for all there exists a simplicial approximation to (where denotes the barycentric subdivision of , and denotes the result of applying barycentric subdivision times.)

References

  • "Simplicial complex", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.