Wikipedia

Recursive ordinal

In mathematics, specifically set theory, an ordinal is said to be recursive if there is a recursive well-ordering of a subset of the natural numbers having the order type .

It is easy to check that is recursive. The successor of a recursive ordinal is recursive, and the set of all recursive ordinals is closed downwards.

The supremum of all recursive ordinals is called the Church–Kleene ordinal and denoted by . The Church–Kleene ordinal is a limit ordinal. An ordinal is recursive if and only if it is smaller than . Since there are only countably many recursive relations, there are also only countably many recursive ordinals. Thus, is countable.

The recursive ordinals are exactly the ordinals that have an ordinal notation in Kleene's .

See also

References

  • Rogers, H. The Theory of Recursive Functions and Effective Computability, 1967. Reprinted 1987, MIT Press, ISBN 0-262-68052-1 (paperback), ISBN 0-07-053522-1
  • Sacks, G. Higher Recursion Theory. Perspectives in mathematical logic, Springer-Verlag, 1990. ISBN 0-387-19305-7
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.