Wikipedia

Rational representation

In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map of algebraic varieties.

Finite direct sums and products of rational representations are rational.

A rational module is a module that can be expressed as a sum (not necessarily direct) of rational representations.

References

  • Bialynicki-Birula, A.; Hochschild, G.; Mostow, G. D. (1963). "Extensions of Representations of Algebraic Linear Groups". American Journal of Mathematics. Johns Hopkins University Press. 85 (1): 131–44. doi:10.2307/2373191. ISSN 1080-6377. JSTOR 2373191 – via JSTOR.
  • Springer Online Reference Works: Rational Representation


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.