Wikipedia

Property P conjecture

In mathematics, the Property P conjecture is a statement about 3-manifolds obtained by Dehn surgery on a knot in the 3-sphere. A knot in the 3-sphere is said to have Property P if every 3-manifold obtained by performing (non-trivial) Dehn surgery on the knot is not simply-connected. The conjecture states that all knots, except the unknot, have Property P.

Research on Property P was started by R. H. Bing, who popularized the name and conjecture.

This conjecture can be thought of as a first step to resolving the Poincaré conjecture, since the Lickorish–Wallace theorem says any closed, orientable 3-manifold results from Dehn surgery on a link. If a knot has Property P, then one cannot construct a counterexample to the Poincaré conjecture by surgery along .

A proof was announced in 2004, as the combined result of efforts of mathematicians working in several different fields.

Algebraic Formulation

Let denote elements corresponding to a preferred longitude and meridian of a tubular neighborhood of .

has Property P if and only if its Knot group is never trivialised by adjoining a relation of the form for some .

See also

  • Property R conjecture

References

  • Eliashberg, Yakov (2004). "A few remarks about symplectic filling". Geometry & Topology. 8: 277–293. arXiv:math.SG/0311459. doi:10.2140/gt.2004.8.277.
  • Etnyre, John B. (2004). "On symplectic fillings". Algebraic & Geometric Topology. 4: 73–80. arXiv:math.SG/0312091. doi:10.2140/agt.2004.4.73.
  • Kronheimer, Peter; Mrowka, Tomasz (2004). "Witten's conjecture and Property P". Geometry & Topology. 8: 295–310. arXiv:math.GT/0311489. doi:10.2140/gt.2004.8.295.
  • Ozsvath, Peter; Szabó, Zoltán (2004). "Holomorphic disks and genus bounds". Geometry & Topology. 8: 311–334. arXiv:math.GT/0311496. doi:10.2140/gt.2004.8.311.
  • Rolfsen, Dale (1976), "Chapter 9.J", Knots and Links, Mathematics Lecture Series, 7, Berkeley, California: Publish or Perish, pp. 280–283, ISBN 0-914098-16-0, MR 0515288
  • Adams, Collin. The Knot Book : An elementary introduction to the mathematical theory of knots. American Mathematical Society. p. 262. ISBN 0-8218-3678-1.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.