Wikipedia

Proper transfer function

In control theory, a proper transfer function is a transfer function in which the degree of the numerator does not exceed the degree of the denominator. A strictly proper transfer function is a transfer function where the degree of the numerator is less than the degree of the denominator.


The difference between the degree of the denominator (number of poles) and degree of the numerator (number of zeros) is the relative degree of the transfer function.

Example

The following transfer function:

is proper, because

.

is biproper, because

.

but is not strictly proper, because

.

The following transfer function is not proper (or strictly proper)

because

.

A not proper transfer function can be made proper by using the method of long division.

The following transfer function is strictly proper

because

.

Implications

A proper transfer function will never grow unbounded as the frequency approaches infinity:

A strictly proper transfer function will approach zero as the frequency approaches infinity (which is true for all physical processes):

Also, the integral of the real part of a strictly proper transfer function is zero.

References

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.