Wikipedia

Positive and negative sets

In measure theory, given a measurable space (X,Σ) and a signed measure μ on it, a set A ∈ Σ is called a positive set for μ if every Σ-measurable subset of A has nonnegative measure; that is, for every EA that satisfies E ∈ Σ, one has μ(E) ≥ 0.

Similarly, a set A ∈ Σ is called a negative set for μ if for every subset E of A satisfying E ∈ Σ, one has μ(E) ≤ 0.

Intuitively, a measurable set A is positive (resp. negative) for μ if μ is nonnegative (resp. nonpositive) everywhere on A. Of course, if μ is a nonnegative measure, every element of Σ is a positive set for μ.

In the light of Radon–Nikodym theorem, if ν is a σ-finite positive measure such that |μ| ≪ ν, a set A is a positive set for μ if and only if the Radon–Nikodym derivative dμ/dν is nonnegative ν-almost everywhere on A. Similarly, a negative set is a set where dμ/dν ≤ 0 ν-almost everywhere.

Properties

It follows from the definition that every measurable subset of a positive or negative set is also positive or negative. Also, the union of a sequence of positive or negative sets is also positive or negative; more formally, if (An)n is a sequence of positive sets, then

is also a positive set; the same is true if the word "positive" is replaced by "negative".

A set which is both positive and negative is a μ-null set, for if E is a measurable subset of a positive and negative set A, then both μ(E) ≥ 0 and μ(E) ≤ 0 must hold, and therefore, μ(E) = 0.

Hahn decomposition

The Hahn decomposition theorem states that for every measurable space (X,Σ) with a signed measure μ, there is a partition of X into a positive and a negative set; such a partition (P,N) is unique up to μ-null sets, and is called a Hahn decomposition of the signed measure μ.

Given a Hahn decomposition (P,N) of X, it is easy to show that AX is a positive set if and only if A differs from a subset of P by a μ-null set; equivalently, if AP is μ-null. The same is true for negative sets, if N is used instead of P.

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.