Wikipedia

Pépin's test

In mathematics, Pépin's test is a primality test, which can be used to determine whether a Fermat number is prime. It is a variant of Proth's test. The test is named for a French mathematician, Théophile Pépin.

Description of the test

Let be the nth Fermat number. Pépin's test states that for n > 0,

is prime if and only if

The expression can be evaluated modulo by repeated squaring. This makes the test a fast polynomial-time algorithm. However, Fermat numbers grow so rapidly that only a handful of Fermat numbers can be tested in a reasonable amount of time and space.

Other bases may be used in place of 3, these bases are

3, 5, 6, 7, 10, 12, 14, 20, 24, 27, 28, 39, 40, 41, 45, 48, 51, 54, 56, 63, 65, 75, 78, 80, 82, 85, 90, 91, 96, 102, 105, 108, 112, 119, 125, 126, 130, 147, 150, 156, 160, ... (sequence A129802 in the OEIS).

The primes in the above sequence are called Elite primes, they are

3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, ... (sequence A102742 in the OEIS)

For integer b > 1, base b may be used if and only if only a finite number of Fermat numbers Fn satisfies that , where is the Jacobi symbol.

In fact, Pépin's test is the same as the Euler-Jacobi test for Fermat numbers, since the Jacobi symbol is −1, i.e. there are no Fermat numbers which are Euler-Jacobi pseudoprimes to these bases listed above.

Proof of correctness

Sufficiency: assume that the congruence

holds. Then , thus the multiplicative order of 3 modulo divides , which is a power of two. On the other hand, the order does not divide , and therefore it must be equal to . In particular, there are at least numbers below coprime to , and this can happen only if is prime.

Necessity: assume that is prime. By Euler's criterion,

,

where is the Legendre symbol. By repeated squaring, we find that , thus , and . As , we conclude from the law of quadratic reciprocity.

Historical Pépin tests

Because of the sparsity of the Fermat numbers, the Pépin test has only been run eight times (on Fermat numbers whose primality statuses were not already known).[1][2][3] Mayer, Papadopoulos and Crandall speculate that in fact, because of the size of the still undetermined Fermat numbers, it will take considerable advances in technology before any more Pépin tests can be run in a reasonable amount of time.[4] As of 2016 the smallest untested Fermat number with no known prime factor is which has 2,585,827,973 digits.

Year Provers Fermat number Pépin test result Factor found later?
1905 Morehead & Western composite Yes (1970)
1909 Morehead & Western composite Yes (1980)
1952 Robinson composite Yes (1953)
1960 Paxson composite Yes (1974)
1961 Selfridge & Hurwitz composite Yes (2010)
1987 Buell & Young composite No
1993 Crandall, Doenias, Norrie & Young composite Yes (2010)
1999 Mayer, Papadopoulos & Crandall composite No

Notes

References

  • P. Pépin, Sur la formule , Comptes rendus de l'Académie des Sciences de Paris 85 (1877), pp. 329–333.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.