Wikipedia

Snub triheptagonal tiling

(redirected from Order-3 snub heptagonal tiling)
Snub triheptagonal tiling
Snub triheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.3.3.7
Schläfli symbol sr{7,3} or
Wythoff symbol | 7 3 2
Coxeter diagram CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png or CDel node h.pngCDel split1-73.pngCDel nodes hh.png
Symmetry group [7,3]+, (732)
Dual Order-7-3 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the order-3 snub heptagonal tiling is a semiregular tiling of the hyperbolic plane. There are four triangles, one heptagon on each vertex. It has Schläfli symbol of sr{7,3}. The snub tetraheptagonal tiling is another related hyperbolic tiling with Schläfli symbol sr{7,4}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

H2 snub 237a.pngH2 snub 237b.png

Dual tiling

The dual tiling is called an order-7-3 floret pentagonal tiling, and is related to the floret pentagonal tiling.

7-3 floret pentagonal tiling.svg

Related polyhedra and tilings

This semiregular tiling is a member of a sequence of snubbed polyhedra and tilings with vertex figure (3.3.3.3.n) and Coxeter–Dynkin diagram CDel node h.pngCDel n.pngCDel node h.pngCDel 3.pngCDel node h.png. These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.