Wikipedia

Omnitruncation

In geometry, an omnitruncation is an operation applied to a regular polytope (or honeycomb) in a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed.

It is a shortcut term which has a different meaning in progressively-higher-dimensional polytopes:

  • Uniform polytope#Truncation operators
    • For regular polygons: An ordinary truncation, t0,1{p} = t{p} = {2p}.
      • Coxeter-Dynkin diagram CDel node 1.pngCDel p.pngCDel node 1.png
    • For uniform polyhedra (3-polytopes): A cantitruncation, t0,1,2{p,q} = tr{p,q}. (Application of both cantellation and truncation operations)
      • Coxeter-Dynkin diagram: CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png
    • For Uniform 4-polytopes: A runcicantitruncation, t0,1,2,3{p,q,r}. (Application of runcination, cantellation, and truncation operations)
      • Coxeter-Dynkin diagram: CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel p.pngCDel node 1.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
    • For uniform polytera (5-polytopes): A steriruncicantitruncation, t0,1,2,3,4{p,q,r,s}. (Application of sterication, runcination, cantellation, and truncation operations)
      • Coxeter-Dynkin diagram: CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node 1.png, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png, CDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
    • For uniform n-polytopes: t0,1,...,n-1{p1,p2,...,pn}.

See also

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (pp.145-154 Chapter 8: Truncation, p 210 Expansion)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links

Polyhedron operators
Seed Truncation Rectification Bitruncation Dual Expansion Omnitruncation Alternations
CDel node 1.pngCDel p.pngCDel node n1.pngCDel q.pngCDel node n2.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node h.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-33-t0.png Uniform polyhedron-43-h01.svg Uniform polyhedron-43-s012.png
t0{p,q}
{p,q}
t01{p,q}
t{p,q}
t1{p,q}
r{p,q}
t12{p,q}
2t{p,q}
t2{p,q}
2r{p,q}
t02{p,q}
rr{p,q}
t012{p,q}
tr{p,q}
ht0{p,q}
h{q,p}
ht12{p,q}
s{q,p}
ht012{p,q}
sr{p,q}
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.