Wikipedia

Nonnegative matrix

In mathematics, a nonnegative matrix, written

is a matrix in which all the elements are equal to or greater than zero, that is,

A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is a subset of all non-negative matrices. While such matrices are commonly found, the term is only occasionally used due to the possible confusion with positive-definite matrices, which are different. A matrix which is both non-negative and is positive semidefinite is called a doubly non-negative matrix.

A rectangular non-negative matrix can be approximated by a decomposition with two other non-negative matrices via non-negative matrix factorization.

Eigenvalues and eigenvectors of square positive matrices are described by the Perron–Frobenius theorem.

Inversion

The inverse of any non-singular M-matrix is a non-negative matrix. If the non-singular M-matrix is also symmetric then it is called a Stieltjes matrix.

The inverse of a non-negative matrix is usually not non-negative. The exception is the non-negative monomial matrices: a non-negative matrix has non-negative inverse if and only if it is a (non-negative) monomial matrix. Note that thus the inverse of a positive matrix is not positive or even non-negative, as positive matrices are not monomial, for dimension n > 1.

Specializations

There are a number of groups of matrices that form specializations of non-negative matrices, e.g. stochastic matrix; doubly stochastic matrix; symmetric non-negative matrix.

See also

  • Metzler matrix

Bibliography

  1. Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 1994, SIAM. ISBN 0-89871-321-8.
  2. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979 (chapter 2), ISBN 0-12-092250-9
  3. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990 (chapter 8).
  4. Krasnosel'skii, M. A. (1964). Positive Solutions of Operator Equations. Groningen: P.Noordhoff Ltd. pp. 381 pp.
  5. Krasnosel'skii, M. A.; Lifshits, Je.A.; Sobolev, A.V. (1990). Positive Linear Systems: The method of positive operators. Sigma Series in Applied Mathematics. 5. Berlin: Helderman Verlag. pp. 354 pp.
  6. Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3
  7. Seneta, E. Non-negative matrices and Markov chains. 2nd rev. ed., 1981, XVI, 288 p., Softcover Springer Series in Statistics. (Originally published by Allen & Unwin Ltd., London, 1973) ISBN 978-0-387-29765-1
  8. Richard S. Varga 2002 Matrix Iterative Analysis, Second ed. (of 1962 Prentice Hall edition), Springer-Verlag.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.