Wikipedia

Multiplication operator

In operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is,

for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f).

This type of operators is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix. More precisely, one of the results of operator theory is a spectral theorem, which states that every self-adjoint operator on a Hilbert space is unitarily equivalent to a multiplication operator on an L2 space.

Example

Consider the Hilbert space X = L2[−1, 3] of complex-valued square integrable functions on the interval [−1, 3]. With f(x) = x2, define the operator

for any function φ in X. This will be a self-adjoint bounded linear operator, with domain all of X = L2[−1, 3] with norm 9. Its spectrum will be the interval [0, 9] (the range of the function xx2 defined on [−1, 3]). Indeed, for any complex number λ, the operator Tfλ is given by

It is invertible if and only if λ is not in [0, 9], and then its inverse is

which is another multiplication operator.

This can be easily generalized to characterizing the norm and spectrum of a multiplication operator on any Lp space.

See also

Notes

References

  • Conway, J. B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. 96. Springer Verlag. ISBN 0-387-97245-5.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.