Wikipedia

Molière radius

The Molière radius is a characteristic constant of a material giving the scale of the transverse dimension of the fully contained electromagnetic showers initiated by an incident high energy electron or photon. By definition, it is the radius of a cylinder containing on average 90% of the shower's energy deposition. Two Molière radii contain 95% of the shower's energy deposition. It is related to the radiation length X0 by the approximate relation RM = 0.0265 X0 (Z + 1.2), where Z is the atomic number.[1] The Molière radius is useful in experimental particle physics in the design of calorimeters: a smaller Molière radius means better shower position resolution, and better shower separation due to a smaller degree shower overlaps.

The Molière radius is named after German physicist Paul Friederich Gaspard Gert Molière (1909–64).[2]

Molière radii for typical materials used in calorimetry

References

  1. ^ Molière Radius Archived 2007-10-02 at the Wayback Machine
  2. ^ Phillip R. Sloan, Brandon Fogel, "Creating a Physical Biology: The Three-Man Paper and Early Molecular Biology" University of Chicago Press, 2011
  3. ^ http://pdg.lbl.gov/2014/AtomicNuclearProperties/HTML/cesium_iodide_CsI.html
  4. ^ http://pdg.lbl.gov/2012/AtomicNuclearProperties/HTML_PAGES/289.html
  5. ^ http://cds.cern.ch/record/256569/files/P00019924.pdf
  6. ^ The CMS Collaboration (2006). "Chapter 1. Introduction". CMS Physics : Technical Design Report Volume 1: Detector Performance and Software. CERN. p. 14. ISBN 9789290832683. CMS has chosen lead tungstate scintillating crystals for its ECAL. These crystals have short radiation (X0 = 0.89 cm) and Moliere (2.2 cm) lengths, are fast (80% of the light is emitted within 25 ns) and radiation hard (up to 10 Mrad).
  7. ^ Pierre Auger Collaboration (2009). "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory". Astroparticle Physics. 32 (2): 89–99. arXiv:0906.5497. doi:10.1016/j.astropartphys.2009.06.004.
  8. ^ Greisen, Kenneth (1960). "Cosmic Ray Showers". Annual Review of Nuclear Science. Laboratory of Nuclear Studies, Cornell University, Ithaca, N. Y. 10: 71. doi:10.1146/annurev.ns.10.120160.000431.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.