Wikipedia

Models of non-Euclidean geometry

Models of non-Euclidean geometry are mathematical models of geometries which are non-Euclidean in the sense that it is not the case that exactly one line can be drawn parallel to a given line l through a point that is not on l. In hyperbolic geometric models, by contrast, there are infinitely many lines through A parallel to l, and in elliptic geometric models, parallel lines do not exist. (See the entries on hyperbolic geometry and elliptic geometry for more information.)

Euclidean geometry is modelled by our notion of a "flat plane." The simplest model for elliptic geometry is a sphere, where lines are "great circles" (such as the equator or the meridians on a globe), and points opposite each other are identified (considered to be the same). The pseudosphere has the appropriate curvature to model hyperbolic geometry.

See also

References

  • Ian Stewart. Flatterland. Perseus Publishing; ISBN 0-7382-0675-X (softcover, 2001)
  • Marvin Jay Greenberg. Euclidean and non-Euclidean geometries: Development and history. Publisher: W H Freeman 1993. ISBN 0-7167-2446-4.

External links

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.