Wikipedia

Metatheorem

Also found in: Encyclopedia.

In logic, a metatheorem is a statement about a formal system proven in a metalanguage. Unlike theorems proved within a given formal system, a metatheorem is proved within a metatheory, and may reference concepts that are present in the metatheory but not the object theory.

A formal system is determined by a formal language and a deductive system (axioms and rules of inference). The formal system can be used to prove particular sentences of the formal language with that system. Metatheorems, however, are proved externally to the system in question, in its metatheory. Common metatheories used in logic are set theory (especially in model theory) and primitive recursive arithmetic (especially in proof theory). Rather than demonstrating particular sentences to be provable, metatheorems may show that each of a broad class of sentences can be proved, or show that certain sentences cannot be proved.

Examples

Examples of metatheorems include:

  • The deduction theorem for first-order logic says that a sentence of the form φ→ψ is provable from a set of axioms A if and only if the sentence ψ is provable from the system whose axioms consist of φ and all the axioms of A.
  • The class existence theorem of von Neumann–Bernays–Gödel set theory states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula.
  • Consistency proofs of systems such as Peano arithmetic.

See also

References

  • Geoffrey Hunter (1969), Metalogic.
  • Alasdair Urquhart (2002), "Metatheory", A companion to philosophical logic, Dale Jacquette (ed.), p. 307

External links

  • Meta-theorem at Encyclopaedia of Mathematics
  • Barile, Margherita. "Metatheorem". MathWorld.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.