Wikipedia

Metacyclic group

In group theory, a metacyclic group is an extension of a cyclic group by a cyclic group. That is, it is a group G for which there is a short exact sequence

where H and K are cyclic. Equivalently, a metacyclic group is a group G having a cyclic normal subgroup N, such that the quotient G/N is also cyclic.

Properties

Metacyclic groups are both supersolvable and metabelian.

Examples

References

  • A. L. Shmel'kin (2001) [1994], "Metacyclic group", Encyclopedia of Mathematics, EMS Press


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.