Wikipedia

Literal (mathematical logic)

In mathematical logic, a literal is an atomic formula (atom) or its negation. The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution.

Literals can be divided into two types:

  • A positive literal is just an atom (e.g., ).
  • A negative literal is the negation of an atom (e.g., ).

The polarity of a literal is positive or negative depending on whether it is a positive or negative literal.

For a literal , the complementary literal is a literal corresponding to the negation of , we can write to denote the complementary literal of . More precisely, if then is and if then is .

In the context of a formula in the conjunctive normal form, a literal is pure if the literal's complement does not appear in the formula.

In Boolean functions, each separate occurrence of a variable, either in inverse or uncomplemented form, is a literal. For example, if , and are variables then the expression contains three literals and the expression contains four literals. However, the expression would also be said to contain four literals, because although two of the literals are identical ( appears twice) these qualify as two separate occurrences.[1]

Examples

In propositional calculus a literal is simply a propositional variable or its negation.

In predicate calculus a literal is an atomic formula or its negation, where an atomic formula is a predicate symbol applied to some terms, with the terms recursively defined starting from constant symbols, variable symbols, and function symbols. For example, is a negative literal with the constant symbol 2, the variable symbols x, y, the function symbols f, g, and the predicate symbol Q.

References

  1. ^ A. P. Godse, D. A. Godse (2008). Digital Logic Circuits. Technical Publications. ISBN 9788184314250.
  • Samuel R. Buss (1998). "An introduction to proof theory". In Samuel R. Buss (ed.). Handbook of proof theory. Elsevier. pp. 1–78. ISBN 0-444-89840-9.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.