Wikipedia

LLT polynomial

In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as q-analogues of products of Schur functions.

J. Haglund, M. Haiman, N. Loehr (2005) showed how to expand Macdonald polynomials in terms of LLT polynomials. Ian Grojnowski and Mark Haiman (preprint) proved a positivity conjecture for LLT polynomials that combined with the previous result implies the Macdonald positivity conjecture for Macdonald polynomials, and extended the definition of LLT polynomials to arbitrary finite root systems.

References

  • I. Grojnowski, M. Haiman, Affine algebras and positivity (preprint available here)
  • J. Haglund, M. Haiman, N. Loehr A Combinatorial Formula for Macdonald PolynomialsMR2138143 J. Amer. Math. Soc. 18 (2005), no. 3, 735–761
  • Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon Ribbon Tableaux, Hall-Littlewood Functions, Quantum Affine Algebras and Unipotent Varieties MR1434225 J. Math. Phys. 38 (1997), no. 2, 1041-1068.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.