Wikipedia

Iterative Viterbi decoding

Iterative Viterbi decoding is an algorithm that spots the subsequence S of an observation O = {o1, ..., on} having the highest average probability (i.e., probability scaled by the length of S) of being generated by a given hidden Markov model M with m states. The algorithm uses a modified Viterbi algorithm as an internal step.

The scaled probability measure was first proposed by John S. Bridle. An early algorithm to solve this problem, sliding window, was proposed by Jay G. Wilpon et al., 1989, with constant cost T = mn2/2.

A faster algorithm consists of an iteration of calls to the Viterbi algorithm, reestimating a filler score until convergence.

The algorithm

A basic (non-optimized) version, finding the sequence s with the smallest normalized distance from some subsequence of t is:

// input is placed in observation s[1..n], template t[1..m], // and [[distance matrix]] d[1..n,1..m] // remaining elements in matrices are solely for internal computations (int, int, int) AverageSubmatchDistance(char s[0..(n+1)], char t[0..(m+1)], int d[1..n,0..(m+1)]) { // score, subsequence start, subsequence end declare int e, B, E t'[0] := t'[m+1] := s'[0] := s'[n+1] := 'e' e := random do e' := e for i := 1 to n do d'[i,0] := d'[i,m+1] := e (e, B, E) := ViterbiDistance(s', t', d') e := e/(E-B+1) until (e == e') return (e, B, E) } 

The ViterbiDistance procedure returns the tuple (e, B, E), i.e., the Viterbi score "e" for the match of t and the selected entry (B) and exit (E) points from it. "B" and "E" have to be recorded using a simple modification to Viterbi.

A modification that can be applied to CYK tables, proposed by Antoine Rozenknop, consists in subtracting e from all elements of the initial matrix d.

References

  • Silaghi, M., "Spotting Subsequences matching a HMM using the Average Observation Probability Criteria with application to Keyword Spotting", AAAI, 2005.
  • Rozenknop, Antoine, and Silaghi, Marius; "Algorithme de décodage de treillis selon le critère de coût moyen pour la reconnaissance de la parole", TALN 2001.

Further reading

  • Li, Huan-Bang; Kohno, Ryuji (2006). An Efficient Code Structure of Block Coded Modulations with Iterative Viterbi Decoding Algorithm. 3rd International Symposium on Wireless Communication Systems. Valencia, Spain: IEEE. doi:10.1109/ISWCS.2006.4362391. ISBN 978-1-4244-0397-4.
  • Wang, Qi; Wei, Lei; Kennedy, R.A. (January 2002). "Iterative Viterbi decoding, trellis shaping, and multilevel structure for high-rate parity-concatenated TCM". IEEE Transactions on Communications. 50 (1): 48–55. doi:10.1109/26.975743. ISSN 0090-6778.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.