Wikipedia

Indecomposable distribution

In probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2.

Examples

Indecomposable

then the probability distribution of X is indecomposable.
Proof: Given non-constant distributions U and V, so that U assumes at least two values ab and V assumes two values cd, with a < b and c < d, then U + V assumes at least three distinct values: a + c, a + d, b + d (b + c may be equal to a + d, for example if one uses 0, 1 and 0, 1). Thus the sum of non-constant distributions assumes at least three values, so the Bernoulli distribution is not the sum of non-constant distributions.
  • Suppose a + b + c = 1, abc ≥ 0, and
This probability distribution is decomposable (as the sum of two Bernoulli distributions) if
and otherwise indecomposable. To see, this, suppose U and V are independent random variables and U + V has this probability distribution. Then we must have
for some pq ∈ [0, 1], by similar reasoning to the Bernoulli case (otherwise the sum U + V will assume more than three values). It follows that
This system of two quadratic equations in two variables p and q has a solution (pq) ∈ [0, 1]2 if and only if
Thus, for example, the discrete uniform distribution on the set {0, 1, 2} is indecomposable, but the binomial distribution for three trials each having probabilities 1/2, 1/2, thus giving respective probabilities a, b, c as 1/4, 1/2, 1/4, is decomposable.
is indecomposable.

Decomposable

  • All infinitely divisible distributions are a fortiori decomposable; in particular, this includes the stable distributions, such as the normal distribution.
  • The uniform distribution on the interval [0, 1] is decomposable, since it is the sum of the Bernoulli variable that assumes 0 or 1/2 with equal probabilities and the uniform distribution on [0, 1/2]. Iterating this yields the infinite decomposition:
where the independent random variables Xn are each equal to 0 or 1 with equal probabilities – this is a Bernoulli trial of each digit of the binary expansion.
  • A sum of indecomposable random variables is necessarily decomposable (as it is a sum), and in fact may a fortiori be an infinitely divisible distribution (not just decomposable as the given sum). Suppose a random variable Y has a geometric distribution
on {0, 1, 2, ...}. For any positive integer k, there is a sequence of negative-binomially distributed random variables Yj, j = 1, ..., k, such that Y1 + ... + Yk has this geometric distribution. Therefore, this distribution is infinitely divisible. But now let Dn be the nth binary digit of Y, for n ≥ 0. Then the Ds are independent and
and each term in this sum is indecomposable.

Related concepts

At the other extreme from indecomposability is infinite divisibility.

  • Cramér's theorem shows that while the normal distribution is infinitely divisible, it can only be decomposed into normal distributions.
  • Cochran's theorem shows that the terms in a decomposition of a sum of squares of normal random variables into sums of squares of linear combinations of these variables always have independent chi-squared distributions.

See also

References

  • Linnik, Yu. V. and Ostrovskii, I. V. Decomposition of random variables and vectors, Amer. Math. Soc., Providence RI, 1977.
  • Lukacs, Eugene, Characteristic Functions, New York, Hafner Publishing Company, 1970.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.