Wikipedia

IPCC list of greenhouse gases

This is a list of long-lived, well-mixed greenhouse gases, along with their atmospheric concentrations and direct radiative forcings, as identified by the Intergovernmental Panel on Climate Change (IPCC).[1] Abundances of these long-lived gases are regularly measured by atmospheric scientists from samples that are collected throughout the world.[2][3][4] Since the 1980's, the annual forcing contributions of the most influential gases are also estimated with high accuracy using IPCC-recommended expressions derived from radiative transfer models.[5]

This list excludes short-lived gases (e.g. ozone, carbon monoxide, NOx) and aerosols (e.g. mineral dust, black carbon) that vary more strongly over location and time. The large influences from water vapor and the complex dynamics of clouds are likewise not included here.

Combined Summary from IPCC Assessment Reports (TAR, AR4, AR5)

Mole fractions: μmol/mol = ppm = parts per million (106); nmol/mol = ppb = parts per billion (109); pmol/mol = ppt = parts per trillion (1012).

Species Lifetime
(years)

[6]:731
100-yr
GWP

[6]:731
Concentration [ppt - except as noted] Radiative forcing [W m−2]
Base
1750
TAR[7]
1998
AR4[8]
2005
AR5[6]:678
2011
Data[9][10]
2020
TAR[7]
1998
AR4[8]
2005
AR5[6]:678
2011
AR6[11]
202x
CO2 [ppm] [A] 1 278 365 379 391 Mauna Loa CO2 monthly mean concentration.svg 1.46 1.66 1.82
CH4 [ppb] 12.4 28 700 1,745 1,774 1,801 Mlo ch4 ts obs 03437.png 0.48 0.48 0.48
N2O [ppb] 121 265 270 314 319 324 HATS Nitrous Oxide concentration.png 0.15 0.16 0.17
CFC-11 45 4,660 0 268 251 238 Hats f11 global.png 0.07 0.063 0.062
CFC-12 100 10,200 0 533 538 528 Hats f12 global.png 0.17 0.17 0.17
CFC-13 640 13,900 0 4 - 2.7 [10] 0.001 - 0.0007
CFC-113 85 6,490 0 84 79 74 Hats f113 global.png 0.03 0.024 0.022
CFC-114 190 7,710 0 15 - - [10] 0.005 - -
CFC-115 1,020 5,860 0 7 - 8.37 [10] 0.001 - 0.0017
HCFC-22 11.9 5,280 0 132 169 213 HCFC22 concentration.jpg 0.03 0.033 0.0447
HCFC-141b 9.2 2,550 0 10 18 21.4 HCFC141b concentration.jpg 0.001 0.0025 0.0034
HCFC-142b 17.2 5,020 0 11 15 21.2 HCFC142b concentration.jpg 0.002 0.0031 0.0040
CH3CCl3 5 160 0 69 19 6.32 BK MC.jpg 0.004 0.0011 0.0004
CCl4 26 1,730 0 102 93 85.8 Hats ccl4 global.png 0.01 0.012 0.0146
HFC-23 222 12,400 0 14 18 24 [10] 0.002 0.0033 0.0043
HFC-32 5.2 677 0 - - 4.92 BK HFC32.jpg - - 0.0005
HFC-125 28.2 3,170 0 - 3.7 9.58 HFC125 concentration.jpg - 0.0009 0.0022
HFC-134a 13.4 1,300 0 7.5 35 62.7 Mauna Loa HFC-134a (CH2FCF3) concentration.png 0.001 0.0055 0.0100
HFC-143a 47.1 4,800 0 - - 12.0 HFC143a concentration.jpg - - 0.0019
HFC-152a 1.5 138 0 0.5 3.9 6.4 HFC152a concentration.jpg 0.000 0.0004 0.0006
CF4 (PFC-14) 50,000 6,630 40 80 74 79 Mauna Loa Tetrafluoromethane.jpg 0.003 0.0034 0.0040
C2F6 (PFC-116) 10,000 11,100 0 3 2.9 4.16 Hexafluoroethane concentration.jpg 0.001 0.0008 0.0010
SF6 3,200 23,500 0 4.2 5.6 7.28 Mauna Loa Sulfur Hexafluoride concentration 1998-2020.jpg 0.002 0.0029 0.0041
SO2F2 36 4,090 0 - - 1.71 SO2F2 mm.png - - 0.0003
NF3 500 16,100 0 - - 0.9 Nitrogen Trifluoride concentration.jpg - - 0.0002

A The IPCC states that "no single atmospheric lifetime can be given" for CO2.[6]:731 This is mostly due to the rapid growth and cumulative magnitude of the disturbances to Earth's carbon cycle by the geologic extraction and burning of fossil carbon.[12] As of year 2014, fossil CO2 emitted as a theoretical 10 to 100 GtC pulse on top of the existing atmospheric concentration was expected to be 50% removed by land vegetation and ocean sinks in less than about a century, as based on the projections of coupled models referenced in the AR5 assessment.[13] A substantial fraction (20-35%) was also projected to remain in the atmosphere for centuries to millennia, where fractional persistence increases with pulse size.[14][15]

Gases from IPCC Fourth Assessment Report

The following table has its sources in Chapter 2, p. 141, Table 2.1. of the IPCC Fourth Assessment Report, Climate Change 2007 (AR4), Working Group 1 Report, The Physical Science Basis.[8]

Mole fractions and their changes Radiative forcing
Species 2005 Change since 1998 2005 (W m−2) 1998 (%)
CO2 379 ± 0.65 μmol/mol +13 μmol/mol 1.66 +13
CH4 1,774 ± 1.8 nmol/mol +11 nmol/mol 0.48
N2O 319 ± 0.12 nmol/mol +5 nmol/mol 0.16 +11
CFC-11 251 ± 0.36 pmol/mol −13 0.063 −5
CFC-12 538 ± 0.18 pmol/mol +4 0.17 +1
CFC-113 79 ± 0.064 pmol/mol −4 0.024 −5
HCFC-22 169 ± 1.0 pmol/mol +38 0.033 +29
HCFC-141b 18 ± 0.068 pmol/mol +9 0.0025 +93
HCFC-142b 15 ± 0.13 pmol/mol +6 0.0031 +57
CH3CCl3 19 ± 0.47 pmol/mol −47 0.0011 −72
CCl4 93 ± 0.17 pmol/mol −7 0.012 −7
HFC-125 3.7 ± 0.10 pmol/mol +2.6 0.0009 +234
HFC-134a 35 ± 0.73 pmol/mol +27 0.0055 +349
HFC-152a 3.9 ± 0.11 pmol/mol +2.4 0.0004 +151
HFC-23 18 ± 0.12 pmol/mol +4 0.0033 +29
SF6 5.6 ± 0.038 pmol/mol +1.5 0.0029 +36
CF4 (PFC-14) 74 ± 1.6 pmol/mol 0.0034
C2F6 (PFC-116) 2.9 ± 0.025 pmol/mol +0.5 0.0008 +22

Gases from IPCC Third Assessment Report

The following table has its sources in Chapter 6, p. 358, Table 6.1. of the IPCC Third Assessment Report, Climate Change 2001 (TAR), Working Group 1, The Scientific Basis.[7]

Gases relevant to radiative forcing only

Gas Alternate name Formula 1998 level Increase since 1750 Radiative forcing (Wm−2) Specific heat at STP
(J kg−1)
Carbon dioxide Carbonic anhydride (CO2) 365 μmol/mol 87 μmol/mol 1.46 0.819
Methane Marsh gas (CH4) 1,745 nmol/mol 1,045 nmol/mol 0.48 2.191
Nitrous oxide Laughing gas (N2O) 314 nmol/mol 44 nmol/mol 0.15 0.88
Tetrafluoromethane Carbon tetrafluoride (CF4) 80 pmol/mol 40 pmol/mol 0.003 1.33
Hexafluoroethane Perfluoroethane (C2F6) 3 pmol/mol 3 pmol/mol 0.001 0.067
Sulfur hexafluoride Sulfur fluoride (SF6) 4.2 pmol/mol 4.2 pmol/mol 0.002 0.074
HFC-23 Trifluoromethane (CHF3) 14 pmol/mol 14 pmol/mol 0.002 0.064
HFC-134a 1,1,1,2-Tetrafluoroethane C2H2F4 7.5 pmol/mol 7.5 pmol/mol 0.001 0.007
HFC-152a 1,1-Difluoroethane (C2H4F2) 0.5 pmol/mol 0.5 pmol/mol 0.000 0.04

Gases relevant to radiative forcing and ozone depletion

Gas Alternate name Formula 1998 level Increase since 1750 Radiative forcing
(Wm−2)
CFC-11§ Trichlorofluoromethane (CFCl3) 268 pmol/mol 268 pmol/mol 0.07
CFC-12§ Dichlorodifluoromethane (CF2Cl2) 533 pmol/mol 533 pmol/mol 0.17
CFC-13§ Chlorotrifluoromethane (CClF3) 4 pmol/mol 4 pmol/mol 0.001
CFC-113 1,1,1-Trichlorotrifluoroethane (C2F3Cl3) 84 pmol/mol 84 pmol/mol 0.03
CFC-114 1,2-Dichlorotetrafluoroethane (C2F4Cl2) 15 pmol/mol 15 pmol/mol 0.005
CFC-115 Chloropentafluoroethane (C2F5Cl) 7 pmol/mol 7 pmol/mol 0.001
Carbon tetrachloride Tetrachloromethane (CCl4) 102 pmol/mol 102 pmol/mol 0.01
1,1,1-Trichloroethane Methyl chloroform (CH3CCl3) 69 pmol/mol 69 pmol/mol 0.004
HCFC-141b 1,1-Dichloro-1-fluoroethane (C2H3FCl2) 10 pmol/mol 10 pmol/mol 0.001
HCFC-142b 1-Chloro-1,1-difluoroethane (C2H3F2Cl) 11 pmol/mol 11 pmol/mol 0.002
Halon-1211 Bromochlorodifluoromethane (CClF2Br) 3.8 pmol/mol 3.8 pmol/mol 0.001
Halon-1301 Bromotrifluoromethane (CF3Br) 2.5 pmol/mol 2.5 pmol/mol 0.001

See also

References

  1. ^ AR5 Climate Change 2013: The Physical Science Basis.
  2. ^ "Global Monitoring Laboratory". NOAA Earth System Research Laboratories. Retrieved 2020-12-11.
  3. ^ "World Data Centre for Greenhouse Gases". World Meteorological Organization Global Atmosphere Watch Programme and Japan Meteorological Agency. Retrieved 2020-12-11.
  4. ^ "Advanced Global Atmospheric Gas Experiment". Massachusettes Institute of Technology. Retrieved 2020-12-11.
  5. ^ Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  6. ^ a b c d e "Chapter 8". AR5 Climate Change 2013: The Physical Science Basis.
  7. ^ a b c "Chapter 6". TAR Climate Change 2001: The Scientific Basis. p. 358.
  8. ^ a b c "Chapter 2". AR4 Climate Change 2007: The Physical Science Basis. p. 141.
  9. ^ "Long-term global trends of atmospheric trace gases". NOAA Earth System Research Laboratories. Retrieved 2021-02-11.
  10. ^ a b c d e "AGAGE Data and Figures". Massachusettes Institute of Technology. Retrieved 2021-02-11.
  11. ^ The IPCC and the Sixth Assessment cycle (PDF) AR6 publication scheduled in 2022
  12. ^ Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C. and 66 others (2019) "Global carbon budget 2019". Earth System Science Data, 11(4): 1783–1838. doi:10.5194/essd-11-1783-2019
  13. ^ "Figure 8.SM.4" (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. p. 8SM-16.
  14. ^ Archer, David (2009). "Atmospheric lifetime of fossil fuel carbon dioxide". Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206.
  15. ^ Joos, F., Roth, R., Fuglestvedt, J.D.; et al. (2013). "Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis". Atmospheric Chemistry and Physics. 13 (5): 2793–2825. doi:10.5194/acpd-12-19799-2012.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.