Wikipedia

Glaisher's theorem

In number theory, Glaisher's theorem is an identity useful to the study of integer partitions. It is named for James Whitbread Lee Glaisher.

Statement

It states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions of the form

where

and

that is, partitions in which no part is repeated d or more times.

When this becomes the special case, known as Euler's theorem, that the number of partitions of into distinct parts is the same as the number of partitions of into odd parts.

Similar theorems

If instead of counting the number of partitions with distinct parts we count the number of partitions with parts differing by at least 2, a theorem similar to Euler's theorem known as Rogers' theorem (after Leonard James Rogers) is obtained:

The number of partitions whose parts differ by at least 2 is equal to the number of partitions involving only numbers congruent to 1 or 4 (mod 5).

For example, there are 6 partitions of 10 into parts differing by at least 2, namely 10, 9+1, 8+2, 7+3, 6+4, 6+3+1; and 6 partitions of 10 involving only 1, 4, 6, 9 ..., namely 9+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1. The theorem was discovered independently by Schur and Ramanujan.

References

  • D. H. Lehmer (1946). "Two nonexistence theorems on partitions". Bull. Amer. Math. Soc. 52 (6): 538–544. doi:10.1090/S0002-9904-1946-08605-X.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.