Wikipedia

Fermat cubic

3D model of Fermat cubic (real points)

In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by

Methods of algebraic geometry provide the following parameterization of Fermat's cubic:

In projective space the Fermat cubic is given by

The 27 lines lying on the Fermat cubic are easy to describe explicitly: they are the 9 lines of the form (w : aw : y : by) where a and b are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates.

FermatCubicSurface.PNG

Real points of Fermat cubic surface.

References

  • Ness, Linda (1978), "Curvature on the Fermat cubic", Duke Mathematical Journal, 45 (4): 797–807, doi:10.1215/s0012-7094-78-04537-4, ISSN 0012-7094, MR 0518106
  • Elkies, Noam. "Complete cubic parameterization of the Fermat cubic surface".


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.