Wikipedia

Dimensional reduction

Dimensional reduction is the limit of a compactified theory where the size of the compact dimension goes to zero. In physics, a theory in D spacetime dimensions can be redefined in a lower number of dimensions d, by taking all the fields to be independent of the location in the extra D − d dimensions.

For example, consider a periodic compact dimension with period L. Let x be the coordinate along this dimension. Any field can be described as a sum of the following terms:

with An a constant. According to quantum mechanics, such a term has momentum nh/L along x, where h is Planck's constant. Therefore, as L goes to zero, the momentum goes to infinity, and so does the energy, unless n = 0. However n = 0 gives a field which is constant with respect to x. So at this limit, and at finite energy, will not depend on x.

This argument generalizes. The compact dimension imposes specific boundary conditions on all fields, for example periodic boundary conditions in the case of a periodic dimension, and typically Neumann or Dirichlet boundary conditions in other cases. Now suppose the size of the compact dimension is L; then the possible eigenvalues under gradient along this dimension are integer or half-integer multiples of 1/L (depending on the precise boundary conditions). In quantum mechanics this eigenvalue is the momentum of the field, and is therefore related to its energy. As L → 0 all eigenvalues except zero go to infinity, and so does the energy. Therefore, at this limit, with finite energy, zero is the only possible eigenvalue under gradient along the compact dimension, meaning that nothing depends on this dimension.

See also


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.