Wikipedia

Diagonal subgroup

In the mathematical discipline of group theory, for a given group G, the diagonal subgroup of the n-fold direct product Gn is the subgroup

This subgroup is isomorphic to G.

Properties and applications

  • If G acts on a set X, the n-fold diagonal subgroup has a natural action on the Cartesian product Xn induced by the action of G on X, defined by
  • If G acts n-transitively on X, then the n-fold diagonal subgroup acts transitively on Xn. More generally, for an integer k, if G acts kn-transitively on X, G acts k-transitively on Xn.
  • Burnside's lemma can be proven using the action of the twofold diagonal subgroup.

See also

  • Diagonalizable group

References

  • Sahai, Vivek; Bist, Vikas (2003), Algebra, Alpha Science Int'l Ltd., p. 56, ISBN 9781842651575.


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.