Wikipedia

Deductive closure

In mathematical logic, a set of logical formulae is deductively closed if it contains every formula that can be logically deduced from , formally: if always implies . If is a set of formulae, the deductive closure of is its smallest superset that is deductively closed.

The deductive closure of a theory is often denoted or . This is a special case of the more general mathematical concept of closure — in particular, the deductive closure of is exactly the closure of with respect to the operation of logical consequence ().

Examples

In propositional logic, the set of all true propositions is deductively closed. This is to say that only true statements are derivable from other true statements.

Epistemic closure

In epistemology, many philosophers have and continue to debate whether particular subsets of propositions—especially ones ascribing knowledge or justification of a belief to a subject—are closed under deduction.

References

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.