Wikipedia

Decomposition matrix

In mathematics, and in particular modular representation theory, a decomposition matrix is a matrix that results from writing the irreducible ordinary characters in terms of the irreducible modular characters, where the entries of the two sets of characters are taken to be over all conjugacy classes of elements of order coprime to the characteristic of the field. All such entries in the matrix are non-negative integers. The decomposition matrix, multiplied by its transpose, forms the Cartan matrix, listing the composition factors of the projective modules.

References

  • Webb, Peter (2016). A Course in Finite Group Representation Theory. Cambridge: Cambridge University Press. doi:10.1017/cbo9781316677216. ISBN 978-1-316-67721-6.

See also


This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.