Wikipedia

Conformal connection

In conformal differential geometry, a conformal connection is a Cartan connection on an n-dimensional manifold M arising as a deformation of the Klein geometry given by the celestial n-sphere, viewed as the homogeneous space

O+(n+1,1)/P

where P is the stabilizer of a fixed null line through the origin in Rn+2, in the orthochronous Lorentz group O+(n+1,1) in n+2 dimensions.

Normal Cartan connection

Any manifold equipped with a conformal structure has a canonical conformal connection called the normal Cartan connection.

Formal definition

A conformal connection on an n-manifold M is a Cartan geometry modelled on the conformal sphere, where the latter is viewed as a homogeneous space for O+(n+1,1). In other words it is an O+(n+1,1)-bundle equipped with

  • a O+(n+1,1)-connection (the Cartan connection)
  • a reduction of structure group to the stabilizer of a point in the conformal sphere (a null line in Rn+1,1)

such that the solder form induced by these data is an isomorphism.

References

  • Le, Anbo. "Cartan connections for CR manifolds." manuscripta mathematica 122.2 (2007): 245-264.

External links

  • Ü. Lumiste (2001) [1994], "Conformal connection", Encyclopedia of Mathematics, EMS Press
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.