Wikipedia

Closed-loop transfer function

A closed-loop transfer function in control theory is a mathematical expression (algorithm) describing the net result of the effects of a closed (feedback) loop on the input signal to the circuits enclosed by the loop.

Overview

The closed-loop transfer function is measured at the output. The output signal waveform can be calculated from the closed-loop transfer function and the input signal waveform.

An example of a closed-loop transfer function is shown below:

Closed Loop Block Deriv.png

The summing node and the G(s) and H(s) blocks can all be combined into one block, which would have the following transfer function:

is called feedforward transfer function, is called feedback transfer function, and their product is called the Open loop transfer function.

Derivation

We define an intermediate signal Z (also known as error signal) shown as follows:

Closed Loop Block Deriv.png

Using this figure we write:

Now, plug the second equation into the first to eliminate Z(s):

Move all the terms with Y(s) to the left hand side, and keep the term with X(s) on the right hand side:

Therefore,

See also

References

  •  This article incorporates public domain material from the General Services Administration document: "Federal Standard 1037C".
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.