Wikipedia

Cantor cube

In mathematics, a Cantor cube is a topological group of the form {0, 1}A for some index set A. Its algebraic and topological structures are the group direct product and product topology over the cyclic group of order 2 (which is itself given the discrete topology).

If A is a countably infinite set, the corresponding Cantor cube is a Cantor space. Cantor cubes are special among compact groups because every compact group is a continuous image of one, although usually not a homomorphic image. (The literature can be unclear, so for safety, assume all spaces are Hausdorff.)

Topologically, any Cantor cube is:

  • homogeneous;
  • compact;
  • zero-dimensional;
  • AE(0), an absolute extensor for compact zero-dimensional spaces. (Every map from a closed subset of such a space into a Cantor cube extends to the whole space.)

By a theorem of Schepin, these four properties characterize Cantor cubes; any space satisfying the properties is homeomorphic to a Cantor cube.

In fact, every AE(0) space is the continuous image of a Cantor cube, and with some effort one can prove that every compact group is AE(0). It follows that every zero-dimensional compact group is homeomorphic to a Cantor cube, and every compact group is a continuous image of a Cantor cube.

References

  • Todorcevic, Stevo (1997). Topics in Topology. ISBN 3-540-62611-5.
  • A.A. Mal'tsev (2001) [1994], "Colon", Encyclopedia of Mathematics, EMS Press
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.