Wikipedia

Auxiliary field

In physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian describing such a field contains an algebraic quadratic term and an arbitrary linear term, while it contains no kinetic terms (derivatives of the field):

The equation of motion for is

and the Lagrangian becomes

Auxiliary fields do not propagate, and hence the content of any theory remains unchanged by adding such fields by hand. If we have an initial Lagrangian describing a field , then the Lagrangian describing both fields is

Therefore, auxiliary fields can be employed to cancel quadratic terms in in and linearize the action .

Examples of auxiliary fields are the complex scalar field F in a chiral superfield, the real scalar field D in a vector superfield, the scalar field B in BRST and the field in the Hubbard–Stratonovich transformation.

The quantum mechanical effect of adding an auxiliary field is the same as the classical, since the path integral over such a field is Gaussian. To wit:

References

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.