Wikipedia

Ineffable cardinal

(redirected from Almost ineffable cardinal)

In the mathematics of transfinite numbers, an ineffable cardinal is a certain kind of large cardinal number, introduced by Jensen & Kunen (1969). In the following definitions, will always be a regular uncountable cardinal number.

A cardinal number is called almost ineffable if for every (where is the powerset of ) with the property that is a subset of for all ordinals , there is a subset of having cardinality and homogeneous for , in the sense that for any in , .

A cardinal number is called ineffable if for every binary-valued function , there is a stationary subset of on which is homogeneous: that is, either maps all unordered pairs of elements drawn from that subset to zero, or it maps all such unordered pairs to one. An equivalent formulation is that a cardinal is ineffable if for every sequence ⟨Aα : α ∈ κ⟩ such that each Aα ⊆ α, there is Aκ such that {ακ : Aα = Aα} is stationary in κ.


More generally, is called -ineffable (for a positive integer ) if for every there is a stationary subset of on which is -homogeneous (takes the same value for all unordered -tuples drawn from the subset). Thus, it is ineffable if and only if it is 2-ineffable.

A totally ineffable cardinal is a cardinal that is -ineffable for every . If is -ineffable, then the set of -ineffable cardinals below is a stationary subset of .

Every n-ineffable cardinal is n-almost ineffable (with set of n-almost ineffable below it stationary), and every n-almost ineffable is n-subtle (with set of n-subtle below it stationary). The least n-subtle cardinal is not even weakly compact (and unlike ineffable cardinals, the least n-almost ineffable is -describable), but n-1-ineffable cardinals are stationary below every n-subtle cardinal.

A cardinal κ is completely ineffable iff there is a non-empty such that
- every is stationary
- for every and , there is homogeneous for f with .

Using any finite n > 1 in place of 2 would lead to the same definition, so completely ineffable cardinals are totally ineffable (and have greater consistency strength). Completely ineffable cardinals are -indescribable for every n, but the property of being completely ineffable is .

The consistency strength of completely ineffable is below that of 1-iterable cardinals, which in turn is below remarkable cardinals, which in turn is below ω-Erdős cardinals. A list of large cardinal axioms by consistency strength is available here.

See also

References

  • Friedman, Harvey (2001), "Subtle cardinals and linear orderings", Annals of Pure and Applied Logic, 107 (1–3): 1–34, doi:10.1016/S0168-0072(00)00019-1.
  • Jensen, Ronald; Kunen, Kenneth (1969), Some Combinatorial Properties of L and V, Unpublished manuscript
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.